4 research outputs found

    Technology Directions for the 21st Century, volume 1

    Get PDF
    For several decades, semiconductor device density and performance have been doubling about every 18 months (Moore's Law). With present photolithography techniques, this rate can continue for only about another 10 years. Continued improvement will need to rely on newer technologies. Transition from the current micron range for transistor size to the nanometer range will permit Moore's Law to operate well beyond 10 years. The technologies that will enable this extension include: single-electron transistors; quantum well devices; spin transistors; and nanotechnology and molecular engineering. Continuation of Moore's Law will rely on huge capital investments for manufacture as well as on new technologies. Much will depend on the fortunes of Intel, the premier chip manufacturer, which, in turn, depend on the development of mass-market applications and volume sales for chips of higher and higher density. The technology drivers are seen by different forecasters to include video/multimedia applications, digital signal processing, and business automation. Moore's Law will affect NASA in the areas of communications and space technology by reducing size and power requirements for data processing and data fusion functions to be performed onboard spacecraft. In addition, NASA will have the opportunity to be a pioneering contributor to nanotechnology research without incurring huge expenses

    Technology Directions for the 21st Century

    Get PDF
    The Office of Space Communications (OSC) is tasked by NASA to conduct a planning process to meet NASA's science mission and other communications and data processing requirements. A set of technology trend studies was undertaken by Science Applications International Corporation (SAIC) for OSC to identify quantitative data that can be used to predict performance of electronic equipment in the future to assist in the planning process. Only commercially available, off-the-shelf technology was included. For each technology area considered, the current state of the technology is discussed, future applications that could benefit from use of the technology are identified, and likely future developments of the technology are described. The impact of each technology area on NASA operations is presented together with a discussion of the feasibility and risk associated with its development. An approximate timeline is given for the next 15 to 25 years to indicate the anticipated evolution of capabilities within each of the technology areas considered. This volume contains four chapters: one each on technology trends for database systems, computer software, neural and fuzzy systems, and artificial intelligence. The principal study results are summarized at the beginning of each chapter

    Technology Directions for the 21st Century

    Get PDF
    New technologies will unleash the huge capacity of fiber-optic cable to meet growing demands for bandwidth. Companies will continue to replace private networks with public network bandwidth-on-demand. Although asynchronous transfer mode (ATM) is the transmission technology favored by many, its penetration will be slower than anticipated. Hybrid networks - e.g., a mix of ATM, frame relay, and fast Ethernet - may predominate, both as interim and long-term solutions, based on factors such as availability, interoperability, and cost. Telecommunications equipment and services prices will decrease further due to increased supply and more competition. Explosive Internet growth will continue, requiring additional backbone transmission capacity and enhanced protocols, but it is not clear who will fund the upgrade. Within ten years, space-based constellations of satellites in Low Earth orbit (LEO) will serve mobile users employing small, low-power terminals. 'Little LEO's' will provide packet transmission services and geo-position determination. 'Big LEO's' will function as global cellular telephone networks, with some planning to offer video and interactive multimedia services. Geosynchronous satellites also are proposed for mobile voice grade links and high-bandwidth services. NASA may benefit from resulting cost reductions in components, space hardware, launch services, and telecommunications services
    corecore